Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Monitoring post‐release dispersal of reintroduced wildlife informs management strategies to improve outcomes. In previous Swift fox (Vulpes velox) reintroductions, post‐release movements corresponded with survival and have been a metric for success of release strategies, but settlement patterns and resource selection by individuals from different source locations have not been compared. We fit piecewise regression models and resource selection functions to Global Positioning System collar data from Swift fox translocated to the Fort Belknap Reservation from Colorado and Wyoming. We found that 76% of studied Swift fox settled, most within 20 km of their release site. Contrary to our predictions, rates of settlement, distance and time to settlement, and resource selection did not differ by cohort or release strategy. Where Swift fox settled, we observed consistent selection of areas with high percentage cover by grass, low terrain ruggedness, intermediate clay soil content, and high Black‐tailed prairie dog suitability. Collectively, our study suggests that Swift fox are adaptable to a range of conditions within grassland ecosystems when high quality habitat is available and when pre‐release husbandry protocols are followed. However, we observed variability in post‐release behavior unexplained by the factors we assessed, possibly attributable to individual personality differences that are well documented in small canids. Swift fox are the most intensively reintroduced canid in the world, and our study highlights how science‐based advances in reintroduction practices can enhance success over time. These advances are particularly effective on Indigenous Peoples' Land, where high ecological and social suitability is present for large‐scale restoration initiatives.more » « lessFree, publicly-accessible full text available July 7, 2026
- 
            There is an urgent need to develop global observation networks to quantify biodiversity trends for evaluating achievements of targets of Kunming-Montreal Global Biodiversity Framework. Camera traps are a commonly used tool, with the potential to enhance global observation networks for monitoring wildlife population trends and has the capacity to constitute global observation networks by applying a unified sampling protocol. The Snapshot protocol is simple and easy for camera trapping which is applied in North America and Europe. However, there is no regional camera-trap network with the Snapshot protocol in Asia. We present the first dataset from a collaborative camera-trap survey using the Snapshot protocol in Japan conducted in 2023. We collected data at 90 locations across nine arrays for a total of 6162 trap-nights of survey effort. The total number of sequences with mammals and birds was 7967, including 20 mammal species and 23 avian species. Apart from humans, wild boar, sika deer and rodents were the most commonly observed taxa on the camera traps, covering 57.9% of all the animal individuals. We provide the dataset with a standard format of Wildlife Insights, but also with Camtrap DP 1.0 format. Our dataset can be used for a part of the global dataset for comparing relative abundances of wildlife and for a baseline of wildlife population trends in Japan. It can also used for training machine-learning models for automatic species identifications.more » « lessFree, publicly-accessible full text available March 13, 2026
- 
            Abstract Forest canopy complexity (i.e., the three‐dimensional structure of the canopy) is often associated with increased species diversity as well as high primary productivity across natural forests. However, canopy complexity, tree diversity, and productivity are often confounded in natural forests, and the mechanisms of these relationships remain unclear. Here, we used two large tree diversity experiments in North America to assess three hypotheses: (1) increasing tree diversity leads to increased canopy complexity, (2) canopy complexity is positively related to tree productivity, and (3) the relationship between tree diversity and tree productivity is indirect and driven by the positive effects of canopy complexity. We found that increasing tree diversity from monocultures to mixtures of 12 species increases canopy complexity and productivity by up to 71% and 73%, respectively. Moreover, structural equation modeling indicates that the effects of tree diversity on productivity are indirect and mediated primarily by changes in internal canopy complexity. Ultimately, we suggest that increasing canopy complexity can be a major mechanism by which tree diversity enhances productivity in young forests.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            The search for simple principles that underlie the spatial structure and dynamics of plant communities is a long-standing challenge in ecology. In particular, the relationship between species coexistence and the spatial distribution of plants is challenging to resolve in species-rich communities. Here we present a comprehensive analysis of the spatial patterns of 720 tree species in 21 large forest plots and their consequences for species coexistence. We show that species with low abundance tend to be more spatially aggregated than more abundant species. Moreover, there is a latitudinal gradient in the strength of this negative aggregation–abundance relationship that increases from tropical to temperate forests. We suggest, in line with recent work, that latitudinal gradients in animal seed dispersal and mycorrhizal associations may jointly generate this pattern. By integrating the observed spatial patterns into population models8, we derive the conditions under which species can invade from low abundance in terms of spatial patterns, demography, niche overlap and immigration. Evaluation of the spatial-invasion condition for the 720 tree species analysed suggests that temperate and tropical forests both meet the invasion criterion to a similar extent but through contrasting strategies conditioned by their spatial patterns. Our approach opens up new avenues for the integration of observed spatial patterns into ecological theory and underscores the need to understand the interaction among spatial patterns at the neighbourhood scale and multiple ecological processes in greater detail.more » « lessFree, publicly-accessible full text available February 26, 2026
- 
            ABSTRACT Accurately estimating species distributions is critical for tracking how biodiversity is shaped by global change. While some species are expanding their ranges, the importance of factors like climate change, habitat change, and human avoidance for explaining this expansion is not well understood. Here, we used observations of 94 North American mammals on iNaturalist to (1) identify errors of omission in the existing range maps; (2) differentiate between extra‐range populations that are likely products of natural expansions vs. introductions; and (3) test hypotheses about where natural range expansions occur. We found a substantial percentage of observations were outside both IUCN (16%) and Area of Habitat (36%) maps, suggesting that integrating contemporary citizen science data would improve existing range maps. We estimated that most observations outside IUCN ranges were natural expansions and 95% of species had at least one naturally expanding population. We also identified introductions for 36% of species, which were particularly extensive for several species. We show that natural range expansions are generally associated with a lighter human footprint and less habitat change and are not associated with warming temperatures. This suggests that habitat modifications by humans constrain the ability of species to expand their range to track a changing climate. We also found substantial variation in the directionality of effects from all factors across species, meaning that our species‐specific findings will be useful for conservation planning. Our study demonstrates that citizen science data can be useful for conservation by tracking how organisms are responding, or failing to respond, to global change.more » « less
- 
            Abstract Reliable maps of species distributions are fundamental for biodiversity research and conservation. The International Union for Conservation of Nature (IUCN) range maps are widely recognized as authoritative representations of species’ geographic limits, yet they might not always align with actual occurrence data. In recent area of habitat (AOH) maps, areas that are not habitat have been removed from IUCN ranges to reduce commission errors, but their concordance with actual species occurrence also remains untested. We tested concordance between occurrences recorded in camera trap surveys and predicted occurrences from the IUCN and AOH maps for 510 medium‐ to large‐bodied mammalian species in 80 camera trap sampling areas. Across all areas, cameras detected only 39% of species expected to occur based on IUCN ranges and AOH maps; 85% of the IUCN only mismatches occurred within 200 km of range edges. Only 4% of species occurrences were detected by cameras outside IUCN ranges. The probability of mismatches between cameras and the IUCN range was significantly higher for smaller‐bodied mammals and habitat specialists in the Neotropics and Indomalaya and in areas with shorter canopy forests. Our findings suggest that range and AOH maps rarely underrepresent areas where species occur, but they may more often overrepresent ranges by including areas where a species may be absent, particularly at range edges. We suggest that combining range maps with data from ground‐based biodiversity sensors, such as camera traps, provides a richer knowledge base for conservation mapping and planning.more » « less
- 
            The future trajectory of global forests is closely intertwined with tree demography, and a major fundamental goal in ecology is to understand the key mechanisms governing spatio‐temporal patterns in tree population dynamics. While previous research has made substantial progress in identifying the mechanisms individually, their relative importance among forests remains unclear mainly due to practical limitations. One approach to overcome these limitations is to group mechanisms according to their shared effects on the variability of tree vital rates and quantify patterns therein. We developed a conceptual and statistical framework (variance partitioning of Bayesian multilevel models) that attributes the variability in tree growth, mortality, and recruitment to variation in species, space, and time, and their interactions – categories we refer to asorganising principles(OPs). We applied the framework to data from 21 forest plots covering more than 2.9 million trees of approximately 6500 species. We found that differences among species, thespeciesOP, proved a major source of variability in tree vital rates, explaining 28–33% of demographic variance alone, and 14–17% in interaction withspace, totalling 40–43%. Our results support the hypothesis that the range of vital rates is similar across global forests. However, the average variability among species declined with species richness, indicating that diverse forests featured smaller interspecific differences in vital rates. Moreover, decomposing the variance in vital rates into the proposed OPs showed the importance of unexplained variability, which includes individual variation, in tree demography. A focus on how demographic variance is organized in forests can facilitate the construction of more targeted models with clearer expectations of which covariates might drive a vital rate. This study therefore highlights the most promising avenues for future research, both in terms of understanding the relative contributions of groups of mechanisms to forest demography and diversity, and for improving projections of forest ecosystems.more » « less
- 
            Abstract AimSynthesize literature on genetic structure within species to understand how geographic features and species traits influence past responses to climate change. LocationNorth America. Time PeriodWe synthesized phylogeographic studies from 1978 to 2023, which describe genetic lineages that diverged during the Pleistocene (≥11,700 years ago). Major Taxa StudiedMammals. MethodsWe conducted a literature review to map genetic breaks in species distributions, then tested a set of geographic hypotheses (e.g., mountains, rivers) to explain their position by comparing break locations to a grid within each species' sampled range using logistic regression. We then conducted a meta‐analysis using species‐specific model estimates to ask if life‐history traits explained variation in which barriers were most important in species' past response to climate change. ResultsOur findings reveal heterogeneity in both where North American mammal phylogeography has been studied and the density of genetic breaks across 229 species. We found relatively high concordance among carnivores, ungulates and lagomorphs, where breaks were associated with mountains, major water bodies and relatively even terrain. In contrast, we found high variability within rodents and shrews, and no evidence that intrinsic factors related to dispersal ability explained the importance of hypothesized barriers across all species. Main ConclusionsSouthern Mexico is a hotspot for genetic breaks that has yet to be integrated into the broader story of North American phylogeography. We show that mountains and major water bodies play particularly important roles as barriers, but substantial variation across species within orders suggests that there is more to the story besides shared climatic or phylogenetic histories. Thus, understanding the phylogeography of individual species will continue to be important given that our results suggest high variability in how species may respond to future global change.more » « less
- 
            Abstract We have more data about wildlife trafficking than ever before, but it remains underutilized for decision-making. Central to effective wildlife trafficking interventions is collection, aggregation, and analysis of data across a range of source, transit, and destination geographies. Many data are geospatial, but these data cannot be effectively accessed or aggregated without appropriate geospatial data standards. Our goal was to create geospatial data standards to help advance efforts to combat wildlife trafficking. We achieved our goal using voluntary, participatory, and engagement-based workshops with diverse and multisectoral stakeholders, online portals, and electronic communication with more than 100 participants on three continents. The standards support data-to-decision efforts in the field, for example indictments of key figures within wildlife trafficking, and disruption of their networks. Geospatial data standards help enable broader utilization of wildlife trafficking data across disciplines and sectors, accelerate aggregation and analysis of data across space and time, advance evidence-based decision making, and reduce wildlife trafficking.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
