skip to main content


Search for: All records

Creators/Authors contains: "McShea, William"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9have suffered from methodological limitations related to the use of static data10–12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests.

     
    more » « less
    Free, publicly-accessible full text available March 21, 2025
  2. Abstract We have more data about wildlife trafficking than ever before, but it remains underutilized for decision-making. Central to effective wildlife trafficking interventions is collection, aggregation, and analysis of data across a range of source, transit, and destination geographies. Many data are geospatial, but these data cannot be effectively accessed or aggregated without appropriate geospatial data standards. Our goal was to create geospatial data standards to help advance efforts to combat wildlife trafficking. We achieved our goal using voluntary, participatory, and engagement-based workshops with diverse and multisectoral stakeholders, online portals, and electronic communication with more than 100 participants on three continents. The standards support data-to-decision efforts in the field, for example indictments of key figures within wildlife trafficking, and disruption of their networks. Geospatial data standards help enable broader utilization of wildlife trafficking data across disciplines and sectors, accelerate aggregation and analysis of data across space and time, advance evidence-based decision making, and reduce wildlife trafficking. 
    more » « less
  3. Abstract

    One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species. We further tested for conmycorrhizal density dependence (CMDD) to test for benefit from shared mutualists. We found that the strength of CDD varies systematically with mycorrhizal type, with ectomycorrhizal tree species exhibiting higher sapling densities with increasing adult densities than arbuscular mycorrhizal tree species. Moreover, we found evidence of positive CMDD for tree species of both mycorrhizal types. Collectively, these findings indicate that mycorrhizal interactions likely play a foundational role in global forest diversity patterns and structure.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. null (Ed.)
  5. Abstract

    Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human–wildlife interactions along gradients of human influence.

     
    more » « less
    Free, publicly-accessible full text available March 18, 2025
  6. null (Ed.)
    Human activity and land use change impact every landscape on Earth, driving declines in many animal species while benefiting others. Species ecological and life history traits may predict success in human-dominated landscapes such that only species with “winning” combinations of traits will persist in disturbed environments. However, this link between species traits and successful coexistence with humans remains obscured by the complexity of anthropogenic disturbances and variability among study systems. We compiled detection data for 24 mammal species from 61 populations across North America to quantify the effects of (1) the direct presence of people and (2) the human footprint (landscape modification) on mammal occurrence and activity levels. Thirty-three percent of mammal species exhibited a net negative response (i.e., reduced occurrence or activity) to increasing human presence and/or footprint across populations, whereas 58% of species were positively associated with increasing disturbance. However, apparent benefits of human presence and footprint tended to decrease or disappear at higher disturbance levels, indicative of thresholds in mammal species’ capacity to tolerate disturbance or exploit human-dominated landscapes. Species ecological and life history traits were strong predictors of their responses to human footprint, with increasing footprint favoring smaller, less carnivorous, faster-reproducing species. The positive and negative effects of human presence were distributed more randomly with respect to species trait values, with apparent winners and losers across a range of body sizes and dietary guilds. Differential responses by some species to human presence and human footprint highlight the importance of considering these two forms of human disturbance separately when estimating anthropogenic impacts on wildlife. Our approach provides insights into the complex mechanisms through which human activities shape mammal communities globally, revealing the drivers of the loss of larger predators in human-modified landscapes. 
    more » « less